Y]
(Y] o e
7,

)

Musical Composer
Identification and Generation Progress

Mildness Onyekwere & Shaun Thornton

|

Contents

03

Recap

13

Transformer

04

Tokenization

14

Scoring

05

Model #1

17

GAN

08

Model #2

18

Questions?

Recap

Original Research Questions:
e How effectively can natural language processing-based models identify the composer of a given
musical piece when given a symbolic/textual representation of it detailing the signatures, pitches,

and their durations?

e Once the composer of musical pieces can be accurately identified, how well could a separate
language processing-based model be trained to generate a novel piece in the style of a desired
composer, using the first model as a guide?

Goal #1:
e Using the Maestro Dataset, create a classifier that can confidently predict the composer of a piece

of piano music.

Goal #2:
e Build and train an LSTM to generate music in the style of a composer, and the use the first model to

evaluate the accuracy of its production

| Tokenization

MIDI data must be converted into a sequence of tokens, just as we would tokenize textual data. The
pretty_midi library was used to parse and extract note information from MIDI files. For the RNN approach, we
used a custom (and highly unstructured) tokenization format, rather than MusicXML / ABCNotation.

Musical Features Token Representation Example
Pitch pS0 (650th key)
Duration d0_25 (quarter note)
Rests rO_50 (half note rest)
Inter-onset interval iISIMUL (denotes a chord)

‘p43', 'do_1', 'iSIMUL', 'int+8', 'p70', 'dO_1',

Tokenization sequence snippet

Model #1: Composer Identification

This model attempts to predict whether a given piece was written by a specific composer
e This differs slightly from our original plan of having the model make predictions
around a set of 3-5 composers
e Binary classification was ultimately more accurate and better suited for the task

sklearn Pipeline:
e Tokenization*
e TfidfVectorizer
o Converts our token sequences into (sparse) vectors
e K-Nearest Neighbors Classifier (k=7)
o Training data is balanced by duration (equal playtime representation for
positive and negative samples)
o Each training sample is labeled depending on whether it is associated with the
target composer (1) or not (0)

|

Model #1: Composer Identification

pipeline = Pipeline(]
"tfidf", TfidfVectorizer(
analyzer="word",
token pattern=r"\S5+",
min_df=2,

Pipeline =i
‘knn”, KNeighborsClassifier(
n_neighbors=7,
metric="cosine”,
weights="distance”,

UGl pipeline.fit(X_train, y_train)

JEL A A ol v pred = pipeline.predict(X_test)

Model #1: Composer Identification

True label

Confusion Matrix: Franz Schubert vs Other

Other

Franz Schubert

Other

Franz Schubert
Predicted label

35

30

25

20

15

10

True label

Confusion Matrix: Franz Schubert vs Other

1200

Other 1900

Franz Schubert

Other Franz Schubert

Predicted label

Confusion Matrix: Franz Schubert vs Other

45
40
3 35
30
25
20
15
p)

10

5

Other Franz Schubert
Predicted label

Other

True label

Franz Schubert

Track-level prediction (direct)
Accuracy (F1) = ~82%

Window-level prediction (30s)
Accuracy (F1) = ~88%

Track-level prediction (window voting)
Accuracy (F1) > 95%

| Model #2: Music Generation

This model attempts to generate music in the style of a target composer. It is paired with
an instance of model #1 that has also been trained on the same composer.

The training data
e Collect all MIDI pieces associated with the target composer

e Split each piece into 30 second windows
e Tokenize each window

The vocabulary
e Contains all tokens seen throughout the data (p*, d*, etc.)
e Includes beginning / end of sequence tokens (<BOS>, <EOS>)
e Represents the set of tokens that our model can generate

The model
e Long short-term memory (LSTM) Recurrent neural network (RNN) implementation

(built with PyTorch)
e To generate a piece, start the model off with <BOS> and have it repeatedly generate

tokens until it produces a <EOS>

|

Model #2: Demo #1

Feature set ﬁ;i-

(@)
(@)

—

s

~&

Pitch

L J

.

#ﬂ'

it

Duration

Comments

(@)
(@)

Hardly better than a random note generator
Painful to listen to

Composer identification score *

(@)

~70%

|

Model #2: Demo #2 ~90

o/
e Feature set

o Pitch

o Duration :

o Rests

e Comments
o Still hardly better than a random note generator
o The inclusion of rests makes the output sound more natural

e Composer identification score *
o ~74%

10

|

Model #2: Demo #3

Feature set

he

o Pitch

o Duration

o Rests

o Inter-onset interval
Comments

(@)
(@)

The model now generates overlapping notes (!)
Notes jump around wildly and unnaturally

Composer identification score *

(@)

~83%

11

| Model #2: Demo #4

|19
¢
"
i;\,
o

e Feature set /;g : |"-'I
o Pitch F- F

Duration

o
o Rests
o
o

. o
Inter-onset interval g 2 !

Pitch intervals

e Comments
o Notes are kept closer together
o The model clearly still lacks an understanding of melody

e Composer identification score *
o ~90%

12

Transformer Shenanigans

e From our background research (and practical work done so far) we know that RNN
can only understand so much when generating consecutive notes and misses much
of the musical context of overarching phrases

e From Model #2's implementation, we see that the model’s accuracy improves when
more features (rests, inter-onset interval, pitch intervals, etc...) are present

e We are developing another version of Model #2 using an attention based transformer
model to see if generated music results sound more authentic

o New Goal: Create “ScoreGPT"!

m This would be Decoder-Only

13

|

Steps before Score GPT

For Model #2, we've initially strayed away from using MusicXML or ABC Notation due
to the simplicity of the RNN, but in order to provide the transformer based model
context of the musical structure, this type of structured token created from MIDI data
is needed. ABC Notation was selected over MusicXML due to its succinctness.
Before creating and training this new Model #2 we would need to...

1) Create a tool that processes MIDI into ABC Notation and vice versa

2) Create tokenizer and parser of raw ABC Notation text to create context trees

3) Create a final vocabulary that GPT can understand

4) Create a tool that can transform the GPT output back into raw ABC Notation

string

14

ABC Notation vs. MusicXML

V:1l

"“intro"!mp! D3 E- | E D3 | D3 E- | E/D/ G/>F/ E2 |
w: ooh | _ _|ooh _|__ hoo _ _|

D3 E- | E4 | D3 E- | E/E/4F/4 E !"!E/ z/ '"\E/ z/
w: ooh | |ooh _|__ _ _ daht daht|

"“hook" F3 E- | E3 E | F2 G E- | E/D/4E/4 D2 D |
w: doo _|_wah|doo _ _|__ _ _ wah|

D3 E- | E3F | zG2E | FDE2 |
w: doo _|_ wah|doo doo|doo wah doo|

"“verse 1" D3 E- | E3 E | D3 E- | E2 E F |
w: doo doo|_ doo|doo doo|_ doo wah|

"“verse 2" D3 E- | E3E | F2GA | FD (E E) |
w: doo doo|_ oh|doo doo doo|doo doo woah *|
"“chorus 1" D3 E- | E3 E | D3 E- | E/D/4E/4 D2 D |
w: doo doo|_ doo|doo doo|_ _ _ _ wah]|

D3E- | E3E | F2GA | FDE (D/E/) |

w: doo doo|_ wah|doo doo doo|doo wah doo wah *|
"“chorus but diff" D3/2 F2 E/ | E D3 | D3/2 F2 F/ | G/>A/ G G F |

w: doo doo doo|doo doo|doo doo doo|doo _ _ doo wah]|
EEEF/G/4A/4 | GF3 | F2G2 | *"G B c B |
w: doo doo doo doo _ _|_ doo|doo doo|doo woah la- ah|
[K:A]""key change!!!" A2 A G- | G/F/4G/4 F2 G | A2 A G- | G/F/4E/4
F/4G/4 F F/ G |
w: doo doo doo|_ _ _ _ wah|doo doo doo| doo wah|

F/E/ GGG- | G2GG | A2 Bc | G F/F/ A/B3/4 z/4 F/ |
w: round and round doo doo|_ doo doo|doo doo wah|* * * * * the|

ABC Notation
(Dense, but more english-like than MIDI)

<note>
<pitch>
<step>E</step>
<alter>l1</alter>
<octave>4</octave>
</pitch>
<duration>2</duration>
<tie type="stop"/>
<voice>1</voice>
<type>eighth</type>
<stem>up</stem>
<beam number="1">begin</beam>
<notations>
<tied type="stop"/>
</notations>
</note>

(Very readable, but also verbose)
(This entire snippet represents a single note)

15

Future Idea:

Generative Adversarial Network

Our existing dual-architecture model could form an effective
Generative adversarial network (GAN)

e Model #1 would be the discriminator, which determines
whether a given piece/window is written by
o A specific composer
o Ahuman
e Model #2 would attempt to generate a piece/window that's
convincingly real
o Convince discriminator that it's from Beethoven
o Convince discriminator that it's from a human

Under this strategy, the two models would effectively train off of each
other and continually improve together. However, this would require
a more thoughtful feature set than what we currently have.

Is real or fake

t

Discriminator

AN

Fake G(z) Real x

t

Generator

t

Noise Z

16

Questions?

