
Musical Composer
Identification and Generation Progress

Mildness Onyekwere & Shaun Thornton

Contents

Tokenization

03 04 0805

13

Recap Model #1 Model #2

Transformer

2

17
GAN

18
Questions?

14
Scoring

Recap
Original Research Questions:

● How effectively can natural language processing–based models identify the composer of a given
musical piece when given a symbolic/textual representation of it detailing the signatures, pitches,
and their durations?

● Once the composer of musical pieces can be accurately identified, how well could a separate
language processing–based model be trained to generate a novel piece in the style of a desired
composer, using the first model as a guide?

Goal #1:
● Using the Maestro Dataset, create a classifier that can confidently predict the composer of a piece

of piano music.

Goal #2:
● Build and train an LSTM to generate music in the style of a composer, and the use the first model to

evaluate the accuracy of its production

3

MIDI data must be converted into a sequence of tokens, just as we would tokenize textual data. The
pretty_midi library was used to parse and extract note information from MIDI files. For the RNN approach, we

used a custom (and highly unstructured) tokenization format, rather than MusicXML / ABCNotation.

Tokenization

Musical Features Token Representation Example

Pitch p50 (50th key)

Duration d0_25 (quarter note)

Rests r0_50 (half note rest)

Inter-onset interval iSIMUL (denotes a chord)

Tokenization sequence snippet

4

Model #1: Composer Identification
This model attempts to predict whether a given piece was written by a specific composer

● This differs slightly from our original plan of having the model make predictions
around a set of 3-5 composers

● Binary classification was ultimately more accurate and better suited for the task

sklearn Pipeline:
● Tokenization*
● TfidfVectorizer

○ Converts our token sequences into (sparse) vectors
● K-Nearest Neighbors Classifier (k=7)

○ Training data is balanced by duration (equal playtime representation for
positive and negative samples)

○ Each training sample is labeled depending on whether it is associated with the
target composer (1) or not (0)

5

Model #1: Composer Identification

6

Pipeline

Train

Predict

Model #1: Composer Identification

Track-level prediction (direct)
Accuracy (F1) = ~82%

Window-level prediction (30s)
Accuracy (F1) = ~88%

Track-level prediction (window voting)
Accuracy (F1) > 95%

7

Model #2: Music Generation
This model attempts to generate music in the style of a target composer. It is paired with
an instance of model #1 that has also been trained on the same composer.

The training data
● Collect all MIDI pieces associated with the target composer
● Split each piece into 30 second windows
● Tokenize each window

The vocabulary
● Contains all tokens seen throughout the data (p*, d*, etc.)
● Includes beginning / end of sequence tokens (<BOS>, <EOS>)
● Represents the set of tokens that our model can generate

The model
● Long short-term memory (LSTM) Recurrent neural network (RNN) implementation

(built with PyTorch)
● To generate a piece, start the model off with <BOS> and have it repeatedly generate

tokens until it produces a <EOS>

8

Model #2: Demo #1
● Feature set

○ Pitch
○ Duration

● Comments
○ Hardly better than a random note generator
○ Painful to listen to

● Composer identification score *
○ ~70%

9

Model #2: Demo #2
● Feature set

○ Pitch
○ Duration
○ Rests

● Comments
○ Still hardly better than a random note generator
○ The inclusion of rests makes the output sound more natural

● Composer identification score *
○ ~74%

10

Model #2: Demo #3
● Feature set

○ Pitch
○ Duration
○ Rests
○ Inter-onset interval

● Comments
○ The model now generates overlapping notes (!)
○ Notes jump around wildly and unnaturally

● Composer identification score *
○ ~83%

11

Model #2: Demo #4
● Feature set

○ Pitch
○ Duration
○ Rests
○ Inter-onset interval
○ Pitch intervals

● Comments
○ Notes are kept closer together
○ The model clearly still lacks an understanding of melody

● Composer identification score *
○ ~90%

12

● From our background research (and practical work done so far) we know that RNN

can only understand so much when generating consecutive notes and misses much

of the musical context of overarching phrases

● From Model #2’s implementation, we see that the model’s accuracy improves when

more features (rests, inter-onset interval, pitch intervals, etc…) are present

● We are developing another version of Model #2 using an attention based transformer

model to see if generated music results sound more authentic

○ New Goal: Create “ScoreGPT”!

■ This would be Decoder-Only

Transformer Shenanigans

13

● For Model #2, we’ve initially strayed away from using MusicXML or ABC Notation due

to the simplicity of the RNN, but in order to provide the transformer based model

context of the musical structure, this type of structured token created from MIDI data

is needed. ABC Notation was selected over MusicXML due to its succinctness.

● Before creating and training this new Model #2 we would need to…

1) Create a tool that processes MIDI into ABC Notation and vice versa

2) Create tokenizer and parser of raw ABC Notation text to create context trees

3) Create a final vocabulary that GPT can understand

4) Create a tool that can transform the GPT output back into raw ABC Notation

string

Steps before Score GPT

14

ABC Notation vs. MusicXML

ABC Notation
(Dense, but more english-like than MIDI)

MusicXML
(Very readable, but also verbose)

(This entire snippet represents a single note)

15

Our existing dual-architecture model could form an effective
Generative adversarial network (GAN)

● Model #1 would be the discriminator, which determines
whether a given piece/window is written by

○ A specific composer
○ A human

● Model #2 would attempt to generate a piece/window that’s
convincingly real

○ Convince discriminator that it’s from Beethoven
○ Convince discriminator that it’s from a human

Under this strategy, the two models would effectively train off of each
other and continually improve together. However, this would require
a more thoughtful feature set than what we currently have.

Future Idea:
Generative Adversarial Network

16

Questions?

17

