
Morphosyntactic Structure for Low-Resource
Language Translation

Alex Kraljic, Christopher Nokes

Written: 11/18/2025, Delivered:

Rochester Institute of Technology | 1

Agenda
● Research Goals and Questions
● Methodology

○ Morphosyntactic Analysis
○ Translation via Transformer
○ Tokenization Problem

● Experiment Setup
● Results

○ Dependency Parser Accuracy
○ Stringification Option 1
○ Stringification Option 2

● Problems
● Future Work
● Questions and References

Rochester Institute of Technology | 2

Research Goals and Questions
● How does language structure impact machine translation?

○ Machine translators learn structure (in part) through attention.
○ Low-resource environments rarely have enough data to create

efficient machine translators.
■ Not enough data to train the attention mechanism.

○ Morphosyntactic taggers require significantly fewer tokens than
machine translators.
■ …but low-resource taggers are less accurate.

○ Training for tagging does not necessarily require tagged data.
○ Structure helps translation in high-resource environments.

● Can we decrease resources required for translation training by
including structural data in word embedding?

Rochester Institute of Technology | 3

Methodology: Overview
● Two-step pipeline

○ Morphosyntactic analysis
○ Translation via transformer

● Two datasets per language pair
○ Source language CONLLU data
○ Parallel data

● Two models used
○ Blank SpaCy model
○ Google T5 Small via Hugging Face

● All done within Google Colab

Rochester Institute of Technology | 4

Methodology: Morphosyntactic Analysis
● Blank SpaCy models…

○ Take a language as input
○ Handle tokenization
○ Assigned pipelines for tasks
○ All tasks must be trained

● What pipelines did we use?
○ Tagger (GPOS)
○ Parser (Dependencies)

● How did we evaluate it?
○ LAS, UAS, and tagging accuracy

Rochester Institute of Technology | 5

Methodology: Translation via Transformer
● Hugging Face: Google T5 Small
● Simple process: load, train, and test
● Training allows us to use our morphosyntactic data

○ Generate syntactic tags on parallel data
○ Use non-ideal tags for the parallel data

■ We train the translator using the real tagger
○ Why? Prepares the translator for inaccurate tagging

● How do we get our syntax data in?
○ Problem: tokenizer wants strings
○ SpaCy output isn’t in string form

Rochester Institute of Technology | 6

Methodology: Tokenization Problem (1/2)
● We need to get our syntax data in.
● We could create our own tokenizer

○ Ideally, the SpaCy tagger should be part of the tokenization stage
○ But, this is a massive undertaking
○ We’d have to tweak the transformer, or make our own

■ Our tokens won’t look how a pre-trained model expects
● We could just “stringify” our morphosyntactic data.

○ This is much easier to implement
○ But, this puts more pressure on the transformer training

■ Needs to learn the language, and our stringification syntax

Rochester Institute of Technology | 7

Methodology: Tokenization Problem (2/2)
● Ultimately, we chose to take the stringification route.

○ Time, knowledge constraints
● New question: how do we stringify morphosyntactic data?

○ Option 1: Include metadata after each word.
■ This [PRO nsubj is] is [VER verb ROOT] a [DET …] …

○ Option 2: Include a second metadata sentence.
■ This is a sentence. Dependency tree: [This PRO nsubj is] …

● Option 1 might confuse the model if it doesn’t learn the format
● Option 2 might just make the model discard morphosyntactic info
● Ultimately, we decided to test both.

Rochester Institute of Technology | 8

Experiment Setup
● Two language pairs, tested bidirectionally:

○ English ↔ Telugu, English ↔ Croatian
● Four counts of morphosyntactic data:

○ 0, 100, 1000, and 10,000 sentences.
○ 0 sentences = base case; no morphosyntactic tagging performed

● Three counts of parallel data:
○ 100, 1000, and 10,000 sentences.

● Two different morphosyntactic stringification versions
● One set of hyperparameters
● 500 sentences dedicated to evaluation via BLEU

Rochester Institute of Technology | 9

Results: Dependency Parser Accuracy
● todo

Rochester Institute of Technology | 10

Results: Stringification Option 1
● Reminder: Option 1 includes metadata after each word

○ This [PRO nsubj is] is [VER verb ROOT] a [DET …] …
● Results: In all cases, performed worse than control case

○ More parallel sentences greatly improves accuracy
○ Adding morphosyntactic data in this format is detrimental
○ No correlation between tagger and translator accuracy
○ The difference isn’t massive (usually <10%)
○ On average, Croatian performs significantly worse than Telugu

● Why might we be seeing this?
○ As mentioned before, our formatting may be confusing the model
○ Using more data to train our formatting defeats the purpose

Rochester Institute of Technology | 11

Results: Option 1, English to Telugu

Rochester Institute of Technology | 12

Results: Option 1, English to Croatian

Rochester Institute of Technology | 13

Rochester Institute of Technology | 14

Results: Option 1, Croatian to English

Results: Stringification Option 2
● Reminder: Option 1 includes metadata after the whole sentence

○ This is a sentence. Dependency tree: [This PRO nsubj is] …
● Results: In progress, but doing better

○ Low-accuracy tags decreases accuracy by 5% versus control
○ But higher accuracy taggers perform better!

■ A very good tagger may outperform the control translator
■ This is what we are now testing for

● Why is this performing better?
○ The data format is simpler to understand

Rochester Institute of Technology | 15

Rochester Institute of Technology | 16

Results: Option 2, English to Telugu

Problems
● The tokenization problem was a serious roadblock

○ Lack of knowledge
○ Lack of time

● Limited resources - Google Colab environment
○ One test took two hours and all of the daily allotted GPU time
○ Ultimately, Colab was great for rapid prototyping
○ …but Colab didn’t work well for long-form testing

● Limited testing due to limited resources and time
○ Only tested one pre-trained transformer
○ Only tested one pair of datasets for each language pair

Rochester Institute of Technology | 17

Future Work and Conclusions
● Firstly, plans for this class project:

○ Finish data collection for larger token counts on test set one
○ Continue collecting data for the second test set
○ Possibly run tests with more data on both test sets
○ Possibly test different languages

● Secondly, possible continuations of the research question:
○ Create a transformer that includes tagging during tokenization

● Ultimately, we conclude that:
○ Stringification may aid translation, depending on tag accuracy
○ Inaccurate tagging or poor stringification is actively detrimental

Rochester Institute of Technology | 18

References
● He, Zhiwei, et al. “Exploring Human-like Translation Strategy with Large

Language Models.” Transactions of the Association for Computational
Linguistics, vol. 12, 1 Jan. 2024, pp. 229–246,
https://doi.org/10.1162/tacl_a_00642. Accessed 30 May 2024.

● Hedderich, Michael, et al. A Survey on Recent Approaches for Natural
Language Processing in Low-Resource Scenarios. 9 Apr. 2021.

● Kann, Katharina, et al. “Weakly Supervised POS Taggers Perform Poorly
on Truly Low-Resource Languages.” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 05, 3 Apr. 2020, pp. 8066–8073,
ojs.aaai.org/index.php/AAAI/article/view/6317,
https://doi.org/10.1609/aaai.v34i05.6317. Accessed 4 Nov. 2025.

● King, Benjamin. Practical Natural Language Processing for
Low-Resource Languages. 2015.

Rochester Institute of Technology | 19

