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Research Goals and Questions

e How does language structure impact machine translation?
o Machine translators learn structure (in part) through attention.
o Low-resource environments rarely have enough data to create
efficient machine translators.
m Not enough data to train the attention mechanism.
o Morphosyntactic taggers require significantly fewer tokens than
machine translators.
m ...but low-resource taggers are less accurate.
o Training for tagging does not necessarily require tagged data.
o Structure helps translation in high-resource environments.
e Can we decrease resources required for translation training by
including structural data in word embedding?
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Methodology: Overview

e Two-step pipeline
o Morphosyntactic analysis
o Translation via transformer
e Two datasets per language pair
o Source language CONLLU data
o Parallel data
e Two models used
o Blank SpaCy model
o Google TS5 Small via Hugging Face
e All done within Google Colab
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Methodology: Morphosyntactic Analysis

e Blank SpaCy models...
o Take a language as input
o Handle tokenization
o Assigned pipelines for tasks
o All tasks must be trained
e What pipelines did we use?
o Tagger (GPOS)
o Parser (Dependencies)
e How did we evaluate it?
o LAS, UAS, and tagging accuracy
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Methodology: Translation via Transformer

e Hugging Face: Google TS5 Small
e Simple process: load, train, and test
e Training allows us to use our morphosyntactic data
o (Generate syntactic tags on parallel data
o Use non-ideal tags for the parallel data
m We train the translator using the real tagger
o Why? Prepares the translator for inaccurate tagging
e How do we get our syntax data in?
o Problem: tokenizer wants strings
o SpaCy output isn’t in string form
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Methodology: Tokenization Problem (1/2)

e We need to get our syntax data in.
e We could create our own tokenizer
o Ideally, the SpaCy tagger should be part of the tokenization stage
o But, this is a massive undertaking
o We’'d have to tweak the transformer, or make our own
m Our tokens won'’t look how a pre-trained model expects
e We could just “stringify” our morphosyntactic data.
o This is much easier to implement
o But, this puts more pressure on the transformer training
m Needs to learn the language, and our stringification syntax
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Methodology: Tokenization Problem (2/2)

e Ultimately, we chose to take the stringification route.
o Time, knowledge constraints
e New question: how do we stringify morphosyntactic data?
o Option 1: Include metadata after each word.
m This[PROnnsubjis]is[VER verb ROOT ]a[DET...]...
o Option 2: Include a second metadata sentence.
m Thisis a sentence. Dependency tree: [This PRO nsubjis] ...
e Option 1 might confuse the model if it doesn’t learn the format
e Option 2 might just make the model discard morphosyntactic info
e Ultimately, we decided to test both.
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Experiment Setup

e Two language pairs, tested bidirectionally:
o English & Telugu, English « Croatian
e Four counts of morphosyntactic data:
o 0,100, 1000, and 10,000 sentences.
o 0 sentences = base case; no morphosyntactic tagging performed
e Three counts of parallel data:
o 100, 1000, and 10,000 sentences.
e Two different morphosyntactic stringification versions
e One set of hyperparameters
e 500 sentences dedicated to evaluation via BLEU
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Results: Dependency Parser Accuracy

Dependency Parsing Accuracy based on Language and Training Sentences
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Results: Stringification Option 1

e Reminder: Option 1 includes metadata after each word

O

This [ PRO nsubj is ] is [ VER verb ROOT Ja[DET ... ] ...

e Results: In all cases, performed worse than control case

O

O O O

O

More parallel sentences greatly improves accuracy

Adding morphosyntactic data in this format is detrimental

No correlation between tagger and translator accuracy

The difference isn’'t massive (usually <10%)

On average, Croatian performs significantly worse than Telugu

e Why might we be seeing this?

©)
©)

As mentioned before, our formatting may be confusing the model
Using more data to train our formatting defeats the purpose
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Results: Option 1, English to Telugu
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Results: Option 1, Croatian to English
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Results: Stringification Option 2

e Reminder: Option 1 includes metadata after the whole sentence
o This is a sentence. Dependency tree: [ This PRO nsubjis ] ...
e Results: In progress, but doing better
o Low-accuracy tags decreases accuracy by 5% versus control
o But higher accuracy taggers perform better!
m Avery good tagger may outperform the control translator
m This is what we are now testing for
e Why is this performing better?
o The data format is simpler to understand
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Results: Option 2, English to Telugu
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Problems

e The tokenization problem was a serious roadblock
o Lack of knowledge
o Lack of time
e Limited resources - Google Colab environment
o One test took two hours and all of the daily allotted GPU time
o Ultimately, Colab was great for rapid prototyping
o ...but Colab didn’t work well for long-form testing
e Limited testing due to limited resources and time
o Only tested one pre-trained transformer
o Only tested one pair of datasets for each language pair
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Future Work and Conclusions

e Firstly, plans for this class project:
o Finish data collection for larger token counts on test set one
o Continue collecting data for the second test set
o Possibly run tests with more data on both test sets
o Possibly test different languages
e Secondly, possible continuations of the research question:
o Create a transformer that includes tagging during tokenization
e Ultimately, we conclude that:
o Stringification may aid translation, depending on tag accuracy
o Inaccurate tagging or poor stringification is actively detrimental
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