Predicting Age from
Social Media
Language

Group 5: Angel Vasquez, Eliana Durell, Max Frohman

Project Recap

Research Question: What linguistic features can be
leveraged to predict a writer’s age or age group in an
age prediction NLP task?

Motivation: Hypothesis: Using a transformer-based
o Moderation and Safety approach will pick up on both broader
o Marketing and Audience structural features (syntax) and more
Targeting fine-grained age-indicating language usage
o Security and Threat Detection like specific topics, punctuation trends, and
o Research and Data Labeling slang

Keywords: age classification, text classification, social media, blogging

Problems

Do we have any problems that we faced?
Transformer models are very large and slow to train
Colab and other free resources are insufficient for training models
Dataset size (600k+ samples) increases training time

Dataset: Blog
age female male Total
M unknown 12287 12259 24546
AUthorSh [p 13-17 6949 4120 | 11069
18-22 7393 7690 | 15083
2327 4043 6062 | 10105
Corpus
33-37 860 1827 2687
38-42 374 819 1193
e From “Effects on Age and 4348 263 584 847
Gender on Blogging” by = it el o
Total 34169 37324 | 71493
Schler et al., 2006 Table 1 Blogs Distribution over Age and Gender
e Collection of over 600,000
posts from over 71,000
blogs on blogger.com as of Classed
as 2> 10's 20's 30's
2004 10's 7036 1027 177
e Agelabels for posts 20's 916 6326 844
. 30's 178 1465 1351
spanning between 13 and 48 Table 7 Confusion matrix for the age classifier using all

features

Dataset Concerns

: : Age Bracket Distribution in Final Dataset
There does exist some bias towards the 23-27 age bracket ~ 79¢ Bracket Pistribution in final batase

The dataset is older 13-17
o Data may contain older “slang” which may be an
identifier for our model
o Mayrunintoissues with modern trends and slang
used by younger generations

234872
(35.64%)

33-42
23-27

Tools

Python libraries
o PyTorch, pandas, NumPy, sklearn, matplotlib
Hugging Face
o Transformers, Datasets, Evaluate
o RobertaForSequenceClassification
m AutoTokenizer, Trainer and TrainingArguments,
EarlyStoppingCallback
LimeTextExplainer
Lonestar6 supercomputer

Model

RobertaForSequenceClassification
o Model provided by the Hugging
Face transformers API
o RoBERTa with a sequence
classification head cal [... [() S P .. PR
m Additional headis + 1 +t 11t 1 1 O §
specialized for working with [T
sequences of text (likeblog T * L . § L)
Sess)

Model Training

Currently testing different
parameters to finetune our
pretrained model
o Current best results:
m Batchsize: 8
m Learning rate: 5e-6
Hugging Face APl handles evaluation
metrics
o Loss, Accuracy, F1, Precision
and Recall, Confusion Matrix

0.76

y

o
~
N

Eval_accurac:

o
~
N

0.70

Eval_f1_weighted
=)
~
X

e e
N ~
S N

o
o
®

eval_accuracy over Epochs

eval_fl_weighted over Epochs

,_.
o
w
IS
«

—e— full_lrle-5_e20_b8.2778018 (max=0.7960)
full_Irle-6_e20_b16.2778014 (max=0.7611)
—e— full_Irle-6_e20_b8.2778017 (max=0.7694)

—o— full_Ir5e-6_e20_b16.2778015 (max=0.7937)

—o— full_Ir5e-6_e20_b8.2778016 (max=0.7973)

—o— full_Irle-5_e20_b8.2778018 (max=0.7928)
full_Irle-6_e20_b16.2778014 (max=0.7523)

—o— full_Ir5e-6_e20_b16.2778015 (max=0.7903)

—e— full_Irle-6_e20_b8.2778017 (max=0.7633)
—o— full_IrSe-6_e20_b8.2778016 (max=0.7949)

TACC Lonestar6

The size of our transformer
necessitates a high powered
computing system for speedy
training

Allows for Python code to be run
with NVIDIA A100 GPUs

Scripts run with batch processing
through the Simple Linux Utility
for Resource Management (slurm)

#!/bin/bash

#SBATCH —-job-name=full_lrle-5_e20_b8

#SBATCH --partition=gpu-al00

#SBATCH —-output=full_lrle-5_e20_b8.%j.out
—error=full_lrle-5_e20_b8.%j.err
--account=CCR24017
--nodes=1
—-ntasks=1
--cpus-per-task=128
—-time=20:00:00
—-mail-type=ALL,TIME_LIMIT_50,TIME_LIMIT 90,TIME_LIMIT
—-mail-user=mbf1102@rit.edu

cd $SLURM_SUBMIT_DIR
export TOKENIZERS_PARALLELISM=false
srun -N1 -nl --exclusive bash -c "source /scratch/10746/maxfroh/1ing581/envs/11

ng581/bin/activate python /scratch/10746/maxfroh/1ing581/11ng581_final/train
er.py --num_epochs=20 --learning_rate=1le-5 --batch_size=8" &

wait

Testing

LIME (Local Interpretable Model-agnostic Explanations
What - Tool that can provide explanations of predictions made by models
Why - To better understand why a model is performing poorly
- Ableto see what parts of the text the model is paying attention to
How
- Treats the model as a black box and perturbs the inputted text
- Fitsasparse linear model around the input
Implementation
- LimeTextExplainer and the names of the target classes
- Function that takes in a list of strings and returns the prediction probabilities for
each class
- explain_instance

Prediction probabilities

Negative [N 0.7

No emotion 0.21

Positive

NOT Positive

0.04

do
0.034
lost]

0.02
crashes
0.02
schedules|
0.02
did|
0.02

any

0.01
no|
0.01

causin,
0.04!
constant

NOT Negative Negative NOT No emotion No emotion

Positive
Text with highlighted words
seriously did you do any testing on the mobile apps ESHSIN ipad crashes ENSIg 1651

schedules and no sync for wp7

Testing

Ablation Study
What - an experiment to understand the importance of specific
components (features) in a language model
How does LIME fit in
Strategies
- Top-N
- Progressive
- Random

To-dos

What we have left to do
Finalize model
LIME and ablation test
Find modern texts and see how the model performs

Questions?

