
Predicting Age from
Social Media
Language
Group 5: Angel Vasquez, Eliana Durell, Max Frohman

Project Recap
Research Question: What linguistic features can be

leveraged to predict a writer’s age or age group in an
age prediction NLP task?

● Motivation:
○ Moderation and Safety
○ Marketing and Audience

Targeting
○ Security and Threat Detection
○ Research and Data Labeling

Hypothesis: Using a transformer-based
approach will pick up on both broader
structural features (syntax) and more
fine-grained age-indicating language usage
like specific topics, punctuation trends, and
slang

Keywords: age classification, text classification, social media, blogging

Problems
Do we have any problems that we faced?
● Transformer models are very large and slow to train
● Colab and other free resources are insufficient for training models
● Dataset size (600k+ samples) increases training time

Dataset: Blog
Authorship
Corpus
● From “Effects on Age and

Gender on Blogging” by
Schler et al., 2006

● Collection of over 600,000
posts from over 71,000
blogs on blogger.com as of
2004

● Age labels for posts
spanning between 13 and 48

Dataset Concerns
● There does exist some bias towards the 23-27 age bracket
● The dataset is older

○ Data may contain older “slang” which may be an
identifier for our model

○ May run into issues with modern trends and slang
used by younger generations

Tools

● Python libraries
○ PyTorch, pandas, NumPy, sklearn, matplotlib

● Hugging Face
○ Transformers, Datasets, Evaluate
○ RobertaForSequenceClassification

■ AutoTokenizer, Trainer and TrainingArguments,
EarlyStoppingCallback

● LimeTextExplainer
● Lonestar6 supercomputer

Model

● RobertaForSequenceClassification
○ Model provided by the Hugging

Face transformers API
○ RoBERTa with a sequence

classification head
■ Additional head is

specialized for working with
sequences of text (like blog
posts)

Model Training
● Currently testing different

parameters to finetune our
pretrained model
○ Current best results:

■ Batch size: 8
■ Learning rate: 5e-6

● Hugging Face API handles evaluation
metrics
○ Loss, Accuracy, F1, Precision

and Recall, Confusion Matrix

TACC Lonestar6
● The size of our transformer

necessitates a high powered
computing system for speedy
training

● Allows for Python code to be run
with NVIDIA A100 GPUs

● Scripts run with batch processing
through the Simple Linux Utility
for Resource Management (slurm)

Testing
LIME (Local Interpretable Model-agnostic Explanations

- What - Tool that can provide explanations of predictions made by models
- Why - To better understand why a model is performing poorly

- Able to see what parts of the text the model is paying attention to
- How

- Treats the model as a black box and perturbs the inputted text
- Fits a sparse linear model around the input

- Implementation
- LimeTextExplainer and the names of the target classes
- Function that takes in a list of strings and returns the prediction probabilities for

each class
- explain_instance

-

Testing

Ablation Study
- What - an experiment to understand the importance of specific

components (features) in a language model
- How does LIME fit in
- Strategies

- Top-N
- Progressive
- Random

To-dos

What we have left to do
- Finalize model
- LIME and ablation test
- Find modern texts and see how the model performs

Questions?

