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Project Recap
Research Question: What linguistic features can be 

leveraged to predict a writer’s age or age group in an 
age prediction NLP task?

● Motivation:
○ Moderation and Safety
○ Marketing and Audience 

Targeting
○ Security and Threat Detection
○ Research and Data Labeling 

Hypothesis: Using a transformer-based 
approach will pick up on both broader 
structural features (syntax) and more 
fine-grained age-indicating language usage 
like specific topics, punctuation trends, and 
slang
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Problems
Do we have any problems that we faced?
● Transformer models are very large and slow to train
● Colab and other free resources are insufficient for training models
● Dataset size (600k+ samples) increases training time



Dataset: Blog 
Authorship 
Corpus 
● From “Effects on Age and 

Gender on Blogging” by 
Schler et al., 2006

● Collection of over 600,000 
posts from over 71,000 
blogs on blogger.com as of 
2004

● Age labels for posts 
spanning between 13 and 48



Dataset Concerns
● There does exist some bias towards the 23-27 age bracket
● The dataset is older

○ Data may contain older “slang” which may be an 
identifier for our model

○ May run into issues with modern trends and slang 
used by younger generations



Tools

● Python libraries
○ PyTorch, pandas, NumPy, sklearn, matplotlib

● Hugging Face
○ Transformers, Datasets, Evaluate
○ RobertaForSequenceClassification

■ AutoTokenizer, Trainer and TrainingArguments, 
EarlyStoppingCallback

● LimeTextExplainer
● Lonestar6 supercomputer



Model

● RobertaForSequenceClassification
○ Model provided by the Hugging 

Face transformers API
○ RoBERTa with a sequence 

classification head
■ Additional head is 

specialized for working with 
sequences of text (like blog 
posts)



Model Training
● Currently testing different 

parameters to finetune our 
pretrained model
○ Current best results:

■ Batch size: 8
■ Learning rate: 5e-6

● Hugging Face API handles evaluation 
metrics
○ Loss, Accuracy, F1, Precision 

and Recall, Confusion Matrix



TACC Lonestar6
● The size of our transformer 

necessitates a high powered 
computing system for speedy 
training

● Allows for Python code to be run 
with NVIDIA A100 GPUs

● Scripts run with batch processing 
through the Simple Linux Utility 
for Resource Management (slurm)



Testing
LIME (Local Interpretable Model-agnostic Explanations

- What - Tool that can provide explanations of predictions made by models
- Why - To better understand why a model is performing poorly 

- Able to see what parts of the text the model is paying attention to 
- How

- Treats the model as a black box and perturbs the inputted text 
- Fits a sparse linear model around the input

- Implementation 
- LimeTextExplainer and the  names of the target classes
- Function that takes in a list of strings and returns the prediction probabilities for 

each class
- explain_instance

-





Testing

Ablation Study 
- What - an experiment to understand the importance of specific 

components (features) in a language model 
- How does LIME fit in
- Strategies

- Top-N
- Progressive
- Random



To-dos

What we have left to do 
- Finalize model
- LIME and ablation test
- Find modern texts and see how the model performs 



Questions?


