
Musical Composer
Identification and Generation

Mildness Onyekwere & Shaun Thornton

Contents

Hypotheses

03

09

05

12

08

15

Motivations Method &
Tools

MAESTRO
Dataset

Paper #1 Paper #2

2

When originally brainstorming a direction for this project, we both wanted
music to be at its center.

● Music is, in a sense, it’s own language that parallels the concepts of human
language quite well.

● Music is something that can be processed auditorily, but it can also be
seen in written formats.

Both of these qualities lend themselves well to Natural Language Processing

Motivations

3

Motivations

Parallels between musical and human language structures

4

Hypotheses

Hypothesis #1: If we train a model on musical data using natural language
processing techniques, then we expect it to be capable of predicting the
artist/composer of a given piece with high accuracy.

Hypothesis #2: If we create a set of models tailored to individual composers,
which uses the first model to evaluate its accuracy, then it should be able to
generate novel musical pieces in the style of the desired artist/composer
through repeated predictions.

Keywords:
Music Information Retrieval, Feature Extraction, NLP Techniques, Authorship Identification, Content Generation

5

The Musical Instrument Digital Interface
● Binary format for storing musical data

○ Efficiently stores information, but is not human readable
○ Would not be handled well by traditional NLP techniques

● Our dataset (discussed later) provides all samples in MIDI format
○ The initial input and final output of our entire process will be in MIDI form
○ But we need a more suitable format for model training/predicting

MIDI file in hex editor

6

ABC Notation vs. MusicXML

ABC Notation
(Dense, but more english-like than MIDI)

MusicXML
(Very readable, but also verbose)

(This entire snippet represents a single note)

7

Methods and Tools
● pretty-midi: Python library for manipulating MIDI files

○ Part of our custom tool that converts MIDI into ABC Notation/MusicXML, and vice-versa

● SentencePiece: An unsupervised text tokenizer and detokenizer for Neural Network-based
text generation systems (Google)
○ Tokenize our musical data, following its conversion to textual form

● Word2Vec: Converts words into word embeddings (captures their semantic meaning)
○ Generate embeddings from the tokenized musical data

● sklearn: Python machine learning library
○ Perform composer classification (KNeighborsClassifier)

● Recurrent neural network (RNN): Good at text generation (ABC notation / MusicXML)
○ Generate a piece through repeated predictions

8

https://github.com/craffel/pretty-midi

The MAESTRO Dataset
● ~200 hours of highly-accurate MIDI recordings

○ Taken from the Minnesota International Piano-e-Competition
■ ~20 year-long run (2002-2021)

○ Includes metadata for each piece
■ Composer, title, year performed

○ Provides a high quality train/validation/test split
■ Though we have created our own splits instead

● Released as part of a corresponding paper
○ Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset
○ Trained models capable of transcribing/composing audio waveforms

■ Used a novel process they called “Wave2Midi2Wave”
○ We do not intend to train our models on audio waveforms

■ This paper is not directly applicable to out work
■ The dataset compiled for the paper is very applicable

9

The MAESTRO Dataset Analysis
● The top 5 composers account for

nearly ¾ of the entire dataset.
○ Fun fact: There was a 45

minute long Bach entry

● We want our set of composers to
have approximately equal
representation for authorship
identification
○ Cut the top 5 down to

around 13h 45m each
○ If this cut hurts accuracy,

we can reduce the number
of composers to just 3
(~20h each)

10

The MAESTRO Dataset Splits
● We have prepared our own set of train/validate/test splits for both the five and three most

frequently played composers. These will be used for composer identification (first model):
○ Ludwig van Beethoven
○ Frédéric Chopin
○ Franz Liszt
○ Robert Schumann
○ Johann Sebastian Bach

● We have also prepared individual train/validate/test splits for the top three composers.
These will be used to train the composer content generation models.
○ Ludwig van Beethoven
○ Frédéric Chopin
○ Franz Liszt

● The first (authorship identification) model will be used to determine the quality of the
content generated by the second set of (piece generation) models.
○ i.e. If we produce a piece in the style of Beethoven, we want the first model to identify

it as being by Beethoven.

11

Natural Language Processing Methods for Symbolic Music
Generation and Information Retrieval

Overview:
● Explores how different NLP methods can be used for symbolic music generation and

information retrieval.
● Provides an in-depth overview of the options available, then evaluate various

strategies and models to determine where/how each performs best.

Relevance:
● This research is strongly relevant to the second model we’re attempting to create,

since its goal will be to generate music symbolically in the style that it is trained in.

Dinh-Viet-Toan Le, Louis Bigo, Dorien Herremans, and Mikaela Keller. 2025

12

Natural Language Processing Methods… Continued

Tokenization Strategies
● Time-Sliced vs Event Based

○ Divide music into fixed temporal slices, and represent which notes (or events) happen in each slice.

○ Represent music as a sequence of events (e.g., “note-on”, “note-off”, “time-shift”, “velocity”). This is
very analogous to tokenizing text into words.

● Composite vs Elementary
○ Elementary tokens might be very basic events (e.g., a single note-on). Composite tokens combine

multiple musical features (pitch, duration, velocity, etc.).

Creating a Model with MIR
● After tokenizing we can create an embeddings layer that can either be

static (word2vec) or contextual (transformer embeddings)

13

Natural Language Processing Methods… Continued
Model Strategies

● Recurrent Models:
○ RNNs, LSTMs, GRUs: Traditional sequence models.
○ Can suffer from the issue of vanishing gradient occurring with long sequences, which is often the case in symbolic music

● Transformer Based:
○ End-to-end training: Training transformers directly on a generation or retrieval task.
○ Pre-training + fine-tuning: Similar to BERT or GPT in NLP, models are pre-trained on large unlabeled corpora of symbolic

music, then fine-tuned for downstream tasks.
○ Encoder-Only (BERT like)

i. Bidirectional models have led to symbolic music adaptations of BERT such as MuseBERT, MusicBERT,
MidiBERT-Piano, etc..

○ Decoder-Only (GPT like)
i. By comparing multiple decoder-only architectures, such pre-trained decoder-only models appear to perform better

in piano generation
● Music Specific Adaptations

○ Bar-level masking: In pre-training, instead of masking individual tokens (notes), entire bars or groups of features are masked
to prevent trivial information leakage, akin to BERT's masked language modeling but adapted for musical structure.

○ Positional encoding / attention tweaks: Because music has special structure (bars, beats, time-signature, tempo),
transformers used for symbolic music often modify the positional encoding or attention to account for musical features

○ Domain-knowledge embeddings: Some models integrate musical knowledge (e.g., pitch intervals, relative timing) into the
embedding space, so the model better captures musical relationships.

14

https://arxiv.org/abs/2402.17467?utm_source=chatgpt.com

NLP-based music processing for composer classification

Overview:
● Performed composer classification with the MAESTRO dataset using SentencePiece and

Word2vec.
○ Their data splits were suboptimal, choosing to select the top artists according to

how many times they were played rather than their total play time
○ Data splits were also highly unbalanced, which the paper often cited as a

hindrance to the model’s performance, yet they never attempted to fix the issue

Relevance:
● The process described in this paper highly resembles what we’re attempting to achieve

with our first model
○ It is crucial that we get this first model right, as it will be used to judge the

accuracy of the composer-specific generation models
○ There are clear improvements that can be made are part of our process

Deepaisarn, S., Chokphantavee, S., Chokphantavee, S. et al. 2023

15

NLP-Based Music Processing for Composer Classification…
Continued

16

Tested (5) different classification models:
● K-nearest neighbors (kNN)
● Random forest classifier (RFC)
● Logistic regression (LR)
● Support vector machines (SVM)
● Multilayer perceptron (MLP)

NLP-Based Music Processing for Composer Classification…
Continued

17

All five models performed exceedingly well,
holding 96+% accuracy across the board,
regardless of window size.

kNNs are the simplest model / the one we
understand best, which is why we selected it
as our preferred option.

F1 scores on test and validation dataset (parenthesis)

● The accuracy of the composer identification model is crucial
○ Error/poor accuracy within this first model could compound into far worse

accuracy issues in the subsequent composer-specific models
○ We need to ensure that the composer identification model is extremely accurate.

Our contingency data splits should help here.

● RNNs often fail to stay on-track when generating longer content
○ We’re currently unsure as to how/when this issue would manifest, if at all
○ This wouldn’t only affect the quality of the generation, but could also break it

completely since we’re generating structured data (ABC notation / MusicXML)
○ Hoping that generating only short pieces (~30s) won’t pose a problem.

● Our generation strategy may not work at all
○ Transformer-based solutions exist, such as MuseBERT / MusicBERTMidi. We

could always transition over to these if needed, but we wan’t to always keep NLP
at the core of our process

Risks (and MIDI-gations)

18

Questions?

