

# Idiom Identification

•••

Jacob Marano & Dan Weil  
Group 7

Given a dataset of excerpts with idioms, how can a large language model, or other form of natural language processing system, identify and label an idiom?

Keywords: Idiom, Large Language Model, Information Extraction, Classification, Span Identification

# Idioms: An approach to identifying major pitfalls for learners

## Research Questions:

1. When teaching a language, should idioms be taught separately or should they just be dealt with as they turn up in texts?
2. Should the idioms that are taught be selected based on frequency?
3. Are certain idioms only appropriate in certain contexts and how does this affect their teaching?
4. How do language learners feel about idioms?
5. What factors influence the confusion caused by idioms?

## Relevance:

- While it can be useful to teach idioms separately, it is more practical to address them as they come up
- Language learners do not have the cultural context necessary to effectively identify or guess what certain idioms mean
- Often less skilled language learners will try to guess the meaning of a phrase without recognizing that it is an idiom
  - If there is a plausible literal meaning
  - If all of the words are familiar
  - If the words are unique to the idiom

# The Impact of Context on Learning Idioms in EFL Classes

## Research Questions:

1. Will the participants who learn idioms with the most context do better on immediate tests than participants who learn idioms with lower context and no context?
2. Will the participants who learn idioms with the most context do better on later tests than participants who learn idioms with lower context and no context?

## Method:

- Three groups of upper intermediate English students were taught English idioms with different levels of context
- These groups were tested on their comprehension of the idioms immediately after and two weeks after learning them

## Relevance:

- Having greater context when learning idioms in a foreign language improves a person's ability to understand and remember them

# Can Transformer be Too Compositional? Analysing Idiom Processing in Neural Machine Translation.

Contributions:

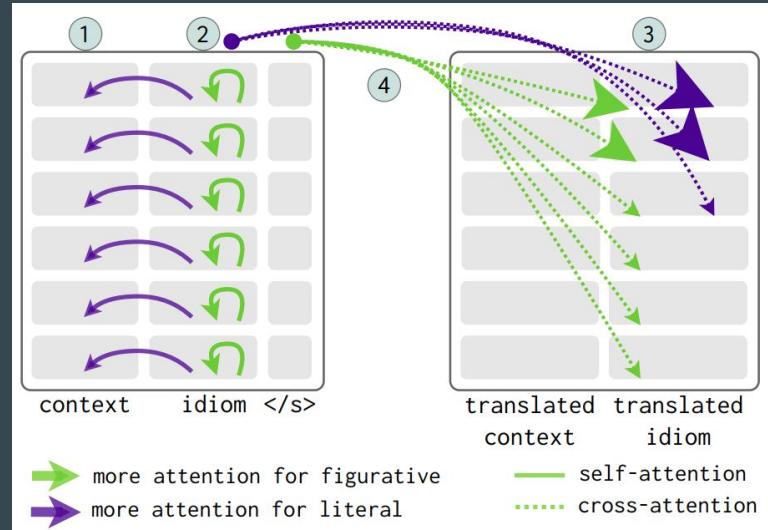
- NMT Transformer translates idioms too compositionally
- $\geq 76\%$  of figurative cases were translated literally

Method:

- Seven European language pairs with English as the source language
- MAGPIE corpus (labeled as non-literal or literal)
- Translate MAGPIE to target language, see if the translation is literal or paraphrased

Relevance:

- While transformers are the go to solution for MT, we may need to consider another method or usage involving transformers



Attention patterns of figurative PIEs

# Leveraging Three Types of Embeddings from Masked Language Models in Idiom Token Classification (1/2)

Contributions:

1. Contextualized token embeddings
2. Uncontextualized token embedding
3. Masked token embedding

Method:

- English dataset: VNC-Tokens
- Japanese dataset: OpenMWE Corpus
- Evaluate performance of embeddings generated from an English and Japanese model against a uncontextualized baseline

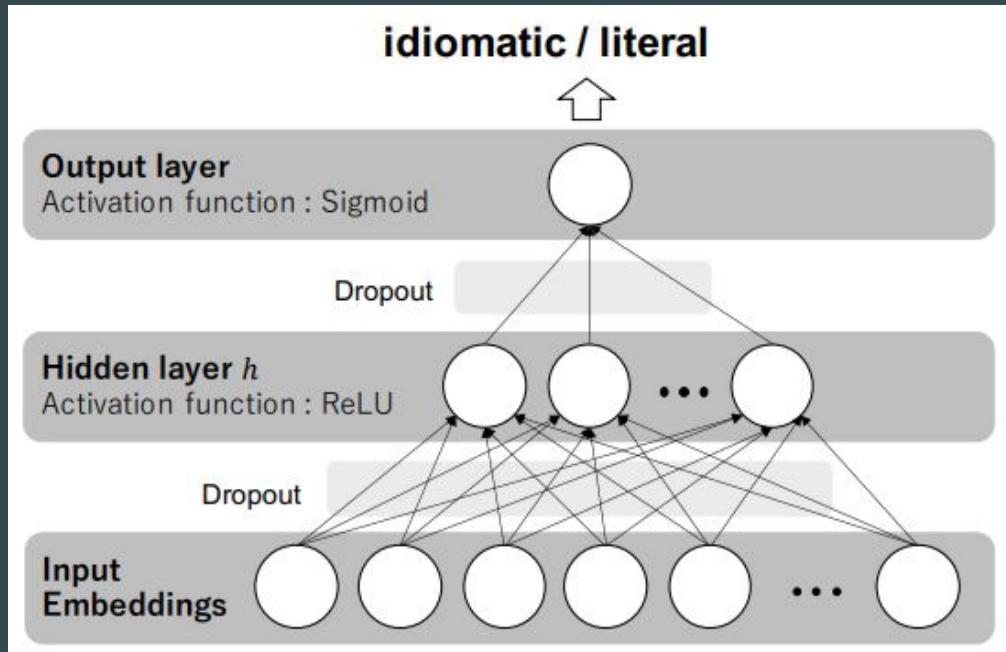
Relevance:

- Uncontextualized token embeddings and masked token embeddings improve idiom token *classification* in a zero-shot setting

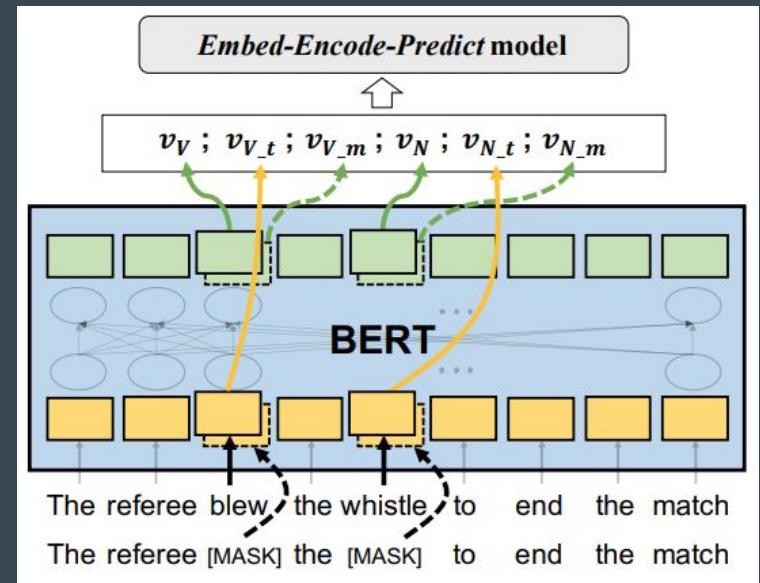
| Embeddings                                                                                               | English      | Japanese     |
|----------------------------------------------------------------------------------------------------------|--------------|--------------|
| $\mathbf{v}_V; \mathbf{v}_N$                                                                             | 0.840        | 0.823        |
| $\mathbf{v}_V; \mathbf{v}_{V\_t}; \mathbf{v}_N; \mathbf{v}_{N\_t}$                                       | 0.859        | 0.842        |
| $\mathbf{v}_V; \mathbf{v}_{V\_m}; \mathbf{v}_N; \mathbf{v}_{N\_m}$                                       | 0.852        | 0.829        |
| $\mathbf{v}_V; \mathbf{v}_{V\_t}; \mathbf{v}_{V\_m}; \mathbf{v}_N; \mathbf{v}_{N\_t}; \mathbf{v}_{N\_m}$ | <b>0.865</b> | <b>0.847</b> |

Macro-averaged accuracy for different combinations of input embeddings.

# Leveraging Three Types of Embeddings from Masked Language Models in Idiom Token Classification (2/2)



The Embed-Encode-Predict Model



Masked embeddings

# BERT-based Idiom Identification using Language Translation and Word Cohesion(1/2)

Contributions:

1. A new loss function using language translation and word cohesion

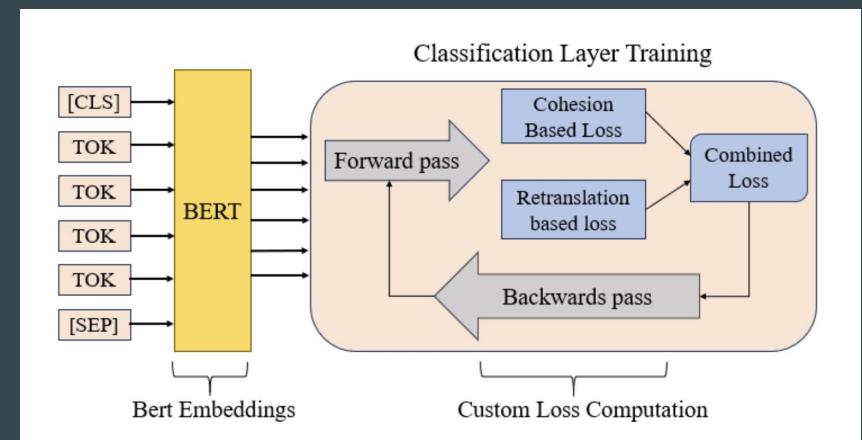
Method:

- Tested with bert-based-uncased
- Language translation metric-METEOR score
- Word cohesion metric-

$$C_S = \frac{1}{N} \sum_{w_i, w_j \in S, i \neq j} \text{sim}(V(w_i), V(w_j))$$

Relevance:

- Incorporation of language translation and word cohesion into the loss function improves accuracy



Architecture of the model

# BERT-based Idiom Identification using Language Translation and Word Cohesion(2/2)

|        |                            |             |
|--------|----------------------------|-------------|
| MAGPIE | Regular Cross Entropy Loss | 98.74       |
|        | Translation                | 98.76       |
|        | Retranslation Loss         | 98.76       |
|        | Cohesion based Loss        | 98.76       |
|        | Combination                | <b>98.8</b> |
| VNC    | Regular Cross Entropy Loss | 99.43       |
|        | Translation                | 99.66       |
|        | Retranslation Loss         | 99.62       |
|        | Cohesion based Loss        | 99.62       |
|        | Combination                | <b>99.7</b> |

|           |                            |              |
|-----------|----------------------------|--------------|
| theidioms | Regular Cross Entropy Loss | 95.73        |
|           | Translation                | 97.5         |
|           | Retranslation Loss         | <b>97.62</b> |
|           | Cohesion based Loss        | 97.61        |
| formal    | Regular Cross Entropy Loss | 97.83        |
|           | Translation                | 98.75        |
|           | Retranslation Loss         | 98.67        |
|           | Cohesion based Loss        | <b>98.83</b> |

|               |                            |              |
|---------------|----------------------------|--------------|
| gtrans        | Regular Cross Entropy Loss | 92.61        |
|               | Translation                | <b>94.91</b> |
|               | Retranslation Loss         | 94.87        |
|               | Cohesion based Loss        | 94.79        |
| gpt&gtrans    | Regular Cross Entropy Loss | 96.07        |
|               | Translation                | 97.23        |
|               | Retranslation Loss         | <b>97.25</b> |
|               | Cohesion based Loss        | 97.22        |
| theidioms 1-1 | Regular Cross Entropy Loss | 89.44        |
|               | Translation                | 90.56        |
|               | Retranslation Loss         | 90.75        |
|               | Cohesion based Loss        | <b>90.85</b> |

Accuracy score for each type of model and each dataset

# Our Model & Methods



# Dataset - MAGPIE

- Sense-annotated corpus of potentially English idiomatic expressions
- 44.5k samples of 1,482 idioms
- Includes: **the sentence** , **annotation** , **idiom** , **usage** , variant, and **pos\_tags**
- Problem:
  - Dataset only has a train split
- Solution:
  - 80/10/10 split

| <b>sentence</b><br>string · lengths                                                              | <b>annotation</b><br>list | <b>idiom</b><br>string · lengths                                                               | <b>usage</b><br>string · classes                                                                |
|--------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| <br>7<br>6.87k |                           | <br>6<br>47 | <br>2 values |
| And she had an incoherent sense...                                                               | [ 0, 0, 0, 0, ... ]       | across the board                                                                               | literal                                                                                         |
| Similar signs of progress and...                                                                 | [ 0, 0, 0, 0, ... ]       | across the board                                                                               | figurative                                                                                      |
| An increase in P is across the...                                                                | [ 0, 0, 0, 0, ... ]       | across the board                                                                               | figurative                                                                                      |
| There's always a demand for jokes...                                                             | [ 0, 0, 0, 0, ... ]       | across the board                                                                               | figurative                                                                                      |
| While sovereign credit quality ha...                                                             | [ 0, 0, 0, 0, ... ]       | across the board                                                                               | figurative                                                                                      |
| ' Are acts of God designed to show...                                                            | [ 0, 0, 1, 1, ... ]       | act of god                                                                                     | figurative                                                                                      |

# Example Data

The old man kicked the bucket.

[0, 0, 0, 1, 1, 1]

Figurative

---

I kicked the bucket over.

[0, 1, 1, 1, 0]

Literal



shutterstock.com • 2172868407

# Road Map

## Training

- bert-based-uncased
- Embed-Encode-Predict
  - uncontextualized and masked embeddings
- MAGPIE 80/10/10 split
- Train three separate models on three independently random splits

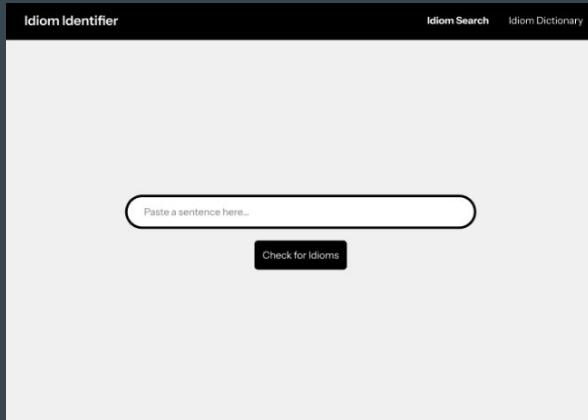
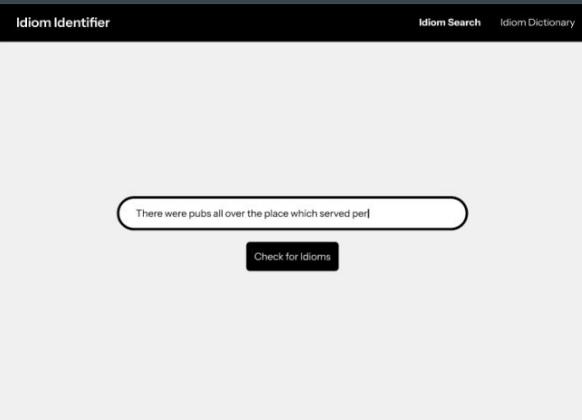
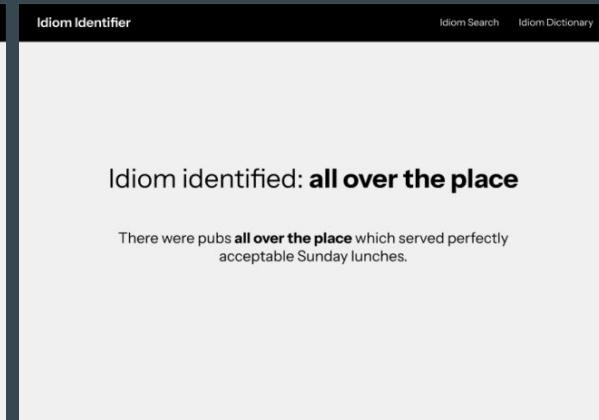
## Evaluation

- Run our model and two other models on each test split
- Compare results with golden data to get a “score”

## Metrics

- Score of our model(s)
- Score of baseline models
- Goal: > 90% average score across all three of our models

# Interface



# Expected Contribution

- We are combining strategies found in BERT-based Idiom Identification using Language Translation and Word Cohesion (BERT) and Leveraging Three Types of Embeddings from Masked Language Models in Idiom Token Classification (MLM).
- We are also creating a website that will support English language learners in idiom acquisition.

# Risks

1. If used for educational purposes, it is important for our models to be highly accurate
  - a. Mitigation plan: Hyperparameters, embedding strategy, and training epochs can be tweaked to increase model performance.
2. Some idioms may be antiquated and derived from hate speech
  - a. Mitigation plan: TBD, potential idea is to flag these idioms in our interface. We may need another dataset.

# Any Questions?

We are all ears